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Abstract
The equilibrium sedimentation profiles of polydisperse van der Waals fluids
have been calculated within the framework of the density functional theory of
non-uniform polydisperse fluids. The main focus is on the delicate balance
between the gravitational force, the interparticle attraction, and the excluded
volume effects. In the presence of gravity, a polydisperse system will experience
size segregation. This trend is reinforced when the polydispersity of the fluid
is increased. The details of this size segregation are quite sensitive to how the
different parts of the interparticle interactions depend on the polydispersity. In
the present work, it is also shown that, within the local density approximation,
the density profiles can be inverted to give the osmotic pressure. This suggests
a practical way of measuring the equation of state of polydisperse colloidal
dispersions.

1. Introduction

The study of sedimentation profiles of colloidal suspensions is an old subject which goes back
to Perrin [1]. When using the approximation of non-interacting particles, the density profile
will follow an exponential law, which allowed Perrin to measure Avogadro’s number in a
simple way. Deviations from the exponential law have motivated many authors. We can quote
the systematic work of Vrij [2], who studied equilibrium density profiles of monodisperse and
polydisperse hard sphere suspensions using the Percus–Yevick approximation. In the original
work of Biben et al [3], the problem has been recast in the framework of the density functional
theory of inhomogeneous fluids. In particular, it has been shown that, for smoothly varying
density profiles, the use of the local density approximation (LDA) allows one to obtain the
osmotic pressure via an inversion procedure. This result is very useful, since nowadays the
density profile can be measured by optical methods [4–7]. The inversion procedure has thus
been applied by Piazza et al [4] to obtain the equation of state of charge-stabilized colloidal
particles. The DFT-LDA approach has also been applied to the sedimentation of binary hard
sphere mixtures [3], and size segregation has been observed. Recently, the sedimentation
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profiles of a rather complicated system—the star polymers—have been investigated [8].
However, the case of polydisperse fluids has scarcely been examined, probably because of
the intrinsic complexity of polydisperse systems [9]. As polydispersity is always more or
less present in colloidal preparations [10], it is thus interesting to observe its effect on the
sedimentation profiles. This is the aim of the present work. It is an expansion of some
preliminary results shown recently [11].

This paper is organized as follows: in section 2 we present the theoretical framework and
the method to obtain the density profiles; section 3 is devoted to the osmotic pressure; the last
section contains our conclusions.

2. Density functional theory for sedimentation profiles of polydisperse fluids

Consider a colloidal dispersion of spherical particles in a solvent. The system is contained in
a tube with a semi-infinite geometry in the z-direction. The particles have radii R(σ ), where
σ designates both the species label and the dimensionless polydispersity parameter, which is
defined by σ = R(σ )/R(1) (where R(1) is a reference radius). We consider a continuous
size distribution, i.e. 0 < σ < ∞. Under the gravitational potential φ(z, σ ) = m(σ )gz, an
inhomogeneous density profile ρ(z, σ ) builds up. The problem is most naturally cast in the
framework of density functional theory [3], for which we briefly recall the formalism. With
ρ(r, σ ) coupled with the external potential φ(r, σ ), we can write down the Euler–Lagrange
equation for the free-energy functional F[ρ]:

µ(σ) = φ(r, σ ) +
δF[ρ]

δρ(r, σ )

∣∣∣∣
T

(1)

where µ(σ) is the chemical potential of the species σ . For van der Waals (vdW) polydisperse
fluids [13], the intrinsic free-energy functional reads as

F(T, [ρ]) = kBT
∫

dr

∫
dσ ρ(r, σ )

{
ln

(
�3(σ )ρ(r, σ )

E(r, [ρ])

)
− 1

}

+ 1
2

∫
dr

∫
dσ

∫
dr′

∫
dσ ′ ρ(r, σ )VA(|r − r′|; σ, σ ′)ρ(r′, σ ′) (2)

where �(σ) is the thermal de Broglie wavelength resulting from the kinetic energy and E[r, ρ]
is the vdW excluded volume correction that results from the repulsions

E(r, [ρ]) = 1 −
∫

dσ v(σ)ρ(r, σ ). (3)

The volume term v(σ ) generally depends on the polydispersity, as well as the interparticle
attraction, VA(|r − r′|; σ, σ ′). In the absence of experimental indication, we adopt—as
explained in [12–14]—the simple model

v(σ ) = v(1)σ k VA(r; σ, σ ′) = σσ ′VA(r; 1, 1) (4)

where v(1) = (4π/3)R3(1) and k = 0 or 1. The case k = 0 corresponds to the simple model
where v(σ ) is independent of σ , as in [13], and k = 1 corresponds to where v(σ ) is linearly
dependent on σ , as in [12]. The case k = 3 would be more realistic but numerically more
difficult to tackle. In view of the z dependence only of φ and ρ, equation (1) becomes

µ(σ) = φ(z, σ ) + kBT ln
�3(σ )

v(1)
+ kBT ln

η(z, σ )

1 − ηk(z)
+ kBT

σ kη0(z)

1 − ηk(z)
+ σ V0η1(z)

+ σ

∫ ∞

−∞
dz′ V1(|z − z′|){η1(z

′) − η1(z)} (5)
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where η(z, σ ) = v(1)ρ(z, σ ) is a dimensionless local density,

v(1)V1(|z|) =
∫ ∞

−∞
dx

∫ ∞

−∞
dy VA

(√
x2 + y2 + z2; 1, 1

)
(6)

is the z-dependent attraction term, and

v(1)V0 =
∫

dr VA(r; 1, 1) = −8ε(1, 1)v(1) (7)

is the cohesion energy of the reference system (where ε(1, 1) is an energy scale).
We recall that

ηn(z) =
∫

dσ σ nη(z, σ ) (n � 0) (8)

are the nth moments of the dimensionless local density η(z, σ ).
In this work we assume that the spatial variation of η(z, σ ) is smooth over the range of

V1(z) so that we can adopt the LDA, in which case the last term in equation (5) can be dropped.
This leads to

µ(σ) = φ(z, σ ) + kBT ln
�3(σ )

v(1)
+ kBT ln

η(z, σ )

1 − ηk(z)
+ kBT

σ kη0(z)

1 − ηk(z)
+ σ V0η1(z). (9)

Equation (9) can be rewritten in the form of an integral equation for η(z, σ ):

η(z, σ ) =
(

v(1)

�3(σ )

)
[1 − ηk(z)] exp

[
βµ(σ) − βφ(z, σ ) − σ kη0(z)

1 − ηk(z)
− βV0ση1(z)

]
(10)

where β = 1/(kBT ). When solving this equation, the following two constraints are to be
satisfied:

(1) The boundary condition:

lim
z→+∞ η(z, σ ) = 0. (11)

(2) The particle number conservation of species σ :∫ ∞

0

dz

R(1)
η(z, σ ) = ηs(σ ) (12)

where ηs(σ ) is a fixed (dimensionless) surface density distribution.

To solve equation (10), we can project it in moment space. This gives, for the first two
orders,

η0(z) = B0(z)
∫

dσ A0(z, σ ) exp

[
−βφ(z, σ ) +

8

t
ση1(z) + βµ(σ)

]
(13)

η1(z) = B0(z)
∫

dσ σ A0(z, σ ) exp

[
−βφ(z, σ ) +

8

t
ση1(z) + βµ(σ)

]
(14)

where

B0(z) = {1 − ηk(z)} v(1)

�3(σ )
A0(z, σ ) = exp

[
− σ kη0(z)

1 − ηk(z)

]
(k = 0 or 1) (15)

and t = kBT/ε(1, 1) = −8kBT/V0 is the reduced temperature. The system of equations (13)
and (14) can be solved jointly with the constrains (11) and (12). The model of an excluded
volume independent of the polydispersity, v(σ ) = v(1) (i.e. k = 0), offers a great simplification
of the solution method because, in this case, A0 in equations (13) and (14) becomes independent
of σ . We can thus divide (13) by (14), which gives

η0(z) = η1(z)

∫
dσ C[z, σ, η1(z)]∫

dσ σC[z, σ, η1(z)]
(16)



5420 L Bellier-Castella and H Xu

where

C[z, σ, η1(z)] ≡ exp

[
−βφ(z, σ ) +

8

t
ση1(z) + βµ(σ)

]
. (17)

Substituting equation (16) into (14), we obtain a closed integral equation for η1(z):

η1(z) = B0(z; η0[η1])A0(z; η0[η1])
∫

dσ σ exp

[
−βφ(z, σ ) +

8

t
ση1(z) + βµ(σ)

]
. (18)

The chemical potential µ(σ) is fixed by constraint (12). In order to keep the problem tractable,
we assume the following n-parameter (1 < n < 6) form for µ(σ):

βµ(σ) = ln

(
�3(σ )

v(1)

)
+ ln(ηs(σ )) +

n∑
i=0

ai(σ − 1)i . (19)

The n coefficients {ai} are then found by minimizing the norm function:

|
η(σ)| =
∣∣∣∣
∫ ∞

0

dz

R(1)
η(z, σ ) − ηs(σ )

∣∣∣∣. (20)

In practice, n = 4 is sufficient to achieve a norm convergence to the order of 10−5 (meaning
that the maximum value of |
η(σ)| is of the order of 10−5). The effective mass of the
colloidal particle, m(σ ), can be either dependent on or independent of the particle radius
R(σ ), according to the particle’s chemical composition [3]. In the present work, we studied
two situations: m(σ ) = m(1)σ l , with l = 0 or 1 (m(1) is a reference mass). The more realistic
case with l = 3 is not considered, to avoid convergence difficulties in solving (18). As for
the initial polydispersity distribution, i.e. hi (σ ) = ηs(σ )/ηs (ηs = ∫

dσ ηs(σ )), the Schulz
distribution is adopted [13]:

hi (σ ) = αα

�(α)
σα−1 exp(−ασ) (21)

where �(α) is the Euler gamma function, 1/α is the distribution’s variance, and I = 1 + (1/α)

is the polydispersity index. From (21), we have the first two moments, m(i)
0 = m(i)

1 = 1
(m(i)

n = ∫
σ nhi (σ ) dσ ).

To summarize, the external parameters are the (reduced) temperature t , the initial density
distribution ηs(σ ), the gravitational strength γ = m(1)g R(1)/kBT , and the model parameters,
which are k (for v(σ )) and l (for m(σ )). Once these are given, the iterative procedure (for
k = 0) is the following: (1) A test set {ai} is proposed, giving µ(σ) through equation (19);
(2) equation (18) is solved iteratively by the method of Ng [15], giving a first solution for η1(z).
From η1(z), one obtains η0(z) from equation (16) and the profile η(z, σ ) from equation (10).
(3) The norm function (20) is then evaluated. If its maximum value is smaller than a tolerance
(here 5 × 10−5), then η(z, σ ) is the searched profile. Otherwise, a new set of {ai} is given in
view of minimizing (20)1 and we return to point (1). For k �= 0, point (2) will be different (see
below). Because of this somewhat lengthy procedure, we only studied two values of the gravity
parameter γ , i.e. γ = 0.05 and 0.1. Within this range, the only role of γ seems to be controlling
the decay of η(z, σ ) at large z, which follows the ideal gas law η(z, σ ) ∝ exp[−γ σ l z/R(1)]
for z � R(1). Although these γ values are rather weak compared to other theoretical studies
of sedimentation profiles [3, 8], they are nevertheless quite significant for typical colloids [4].
In the following paragraph we shall examine some representative results that we obtained.

Figure 1 shows the density profile η(z, σ ) for a gravity parameter γ = 0.1, temperature
t = 1.5, m(σ ) = m(1) and v(σ ) = v(1), compared with the monodisperse density profile
ηmono(z). One clearly observes a segregation phenomenon. Instead of being a continuously
1 NAG library, subroutine E04FCF.
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Figure 1. Reduced density profiles η(z�, σ ) as a function of the reduced distance z� = z/R(1)

of a polydisperse fluid with reduced surface density ηs = ρsv(1)/R(1) = 13, polydispersity
index I = 1.04 at reduced temperature t = kBT/ε(1, 1) = 1.5, and the gravitational strength
γ = m(1)gR(1)/kBT = 0.1. The model that was used is v(σ ) = v(1) and m(σ ) = m(1). The
curves represent three sizes: σ = 1.25 (— · —); 0.75 (——); and 0.65 (– – –). For comparison,
the profile for a monodisperse system is also shown (· · ·).

decreasing function of z, the smaller particles (σ < 1) show a depletion at the bottom and some
maximum density at a finite height. This can be understood by considering the combination
of gravity (equal for all sizes) and the strong attraction among the larger spheres (σ > 1) that
‘glue’ the large spheres near the bottom and thus expel the smaller spheres from it. To support
this analysis, we plot in figure 2 the density profiles at the current temperature (t = 1.5) and
at very high temperature, where attractions no longer play any role. We see that, without
attractions, the density profiles are much more spread out for all sizes and those for the smaller
spheres are now continuously decreasing functions of z. It is also interesting to observe how the
polydispersity influences the size segregation. In figure 3, we plot η(z, σ ) of the small spheres
for two different values of I . Whereas for I = 1.02 the depletion phenomenon is just barely
visible, for I = 1.04 it becomes quite important. Furthermore, if we allow m(σ ) to depend
on σ , i.e. m(σ ) = m(1)σ , then the size segregation is more pronounced (figure 4) because
the gravitation and attraction act together to favour the situation with many large particles at
the bottom. In figure 4, we compare the density profiles obtained from the two models of
m(σ ) = m(1)σ l , i.e. l = 0 and 1. Those with l = 1 indeed give an increased density of the
large spheres at the bottom and enhance the depletion of the small spheres. This kind of size
segregation has also been observed in binary hard sphere mixtures [3], but only in the case
of a strong dependence of the effective mass on the particle size, i.e. m(σ ) = m(1)σ 3, and
not in the case m(σ ) = m(1), as in our study. This difference with respect to our results is
easily understood if we remember that, in binary hard sphere mixtures, there is no attraction
term and the excluded volume is proportional to R3

i (i = 1, 2). Thus, the size segregation is
controlled by the balance between gravity and the excluded volume terms only. If we render
our model more realistic by installing a dependence of the excluded volume on σ , then the
balance between the volume exclusion and the attraction appears in our system. We would lose



5422 L Bellier-Castella and H Xu
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η(
z*

,σ
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t=900, σ=0.65
t=900, σ=1
t=1.5, σ=0.65
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Figure 2. A comparison of the density profiles η(z�, σ ) at t = 1.5 and at very high temperature
t = 900 (limit t → ∞) for σ = 0.65 and 1. These profiles correspond to γ = 0.05, I = 1.04 and
ηs = 25. The model used is v(σ ) = v(1) and m(σ ) = m(1).

the numerical simplicity of the k = 0 model, since equations (13) and (14) must now be solved
simultaneously, making convergence to the solution much more difficult. Nevertheless, it can
be reached in some cases. As an example, in figure 5 we show density profiles with or without
a polydispersity-dependent excluded volume, i.e. v(σ ) = v(1) or v(1)σ , with m(σ ) = m(1).
The effect of volume polydispersity is very visible: for k = 0 the density of large spheres
is a continuously decreasing function of z whereas that of the small spheres is not (see the
inset). We are in an ‘attraction dominant’ situation. In contrast, for k = 1 the tendencies
are inverted, i.e. the small spheres adopt a continuously decreasing density profile and the
large spheres adopt a non-continuous profile now, as in the binary hard sphere mixture [3]
when m(σ ) = m(1). The weak polydispersity index used here (I = 1.02) did not allow us to
observe a clear depletion of the large spheres, but the trend is there (see the inset). By using
optical measurements [4–7] it is possible to determine density profiles at a given z and analyse
the size distribution. This would then indicate how the interaction potential depends on the
polydispersity. In figure 6, we show typical results for the moment profiles η0(z) and η1(z),
within the model m(σ ) = m(1)σ . We see that they are continuous functions of z. But there is
an indication of size segregation. The initial distribution has m(i)

1 = 1. If we define a local first
moment m1(z) = η1(z)/η0(z), then near the bottom we have m1(z) > 1 and above a certain
height (z ≈ 20R(1)) we have m1(z) < 1 (see inset). However, unlike the local densities,
the moments only display quite slight segregation here due to the integration over σ . Before
closing this section we note that, in a theoretical study of polydisperse hard sphere fluids near
a wall [16], a local size segregation has also been predicted.

3. Equation of state from the density profiles

Here we show a general approach for obtaining the osmotic pressure from the (measured or
theoretical) sedimentation density profiles. It is a generalization to the polydisperse case of
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α=25
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Figure 3. The influence of the polydispersity index I on the density profiles of the small particles.
Displayed here are the profiles η(z�, σ ) corresponding to I = 1.04 (or α = 25) and I = 1.02 (or
α = 50) for particle sizes σ = 0.7 (——), 0.65 (— · —) and 0.6 (– – –). The thermodynamic
conditions t , ηs and γ are identical to those of figure 1.

Figure 4. The influence of the mass polydispersity on the density profiles η(z�, σ ). The first case
corresponds to m = m(1) (— · —) and the second to m = m(1)σ (——). For each case, three
sizes are shown: σ = 1 (top curve), 1.25 (middle curve) and 0.75 (lower curve). The polydispersity
index I = 1.04 and the thermodynamic conditions are ηs = 25, t = 1.5 and γ = 0.05. Here,
v(σ ) = v(1).
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Figure 5. The influence of volume polydispersity on the density profiles η(z�, σ ). The
polydispersity index I = 1.02 and the thermodynamic conditions are ηs = 25, t = 1.5 and
γ = 0.05. The mass polydispersity is m(σ ) = m(1). The first model is v = v(1); profiles shown
correspond to σ = 1 (——), 1.25 (– – –) and 0.75 (· · · · · ·). The second model is v = v(1)σ ;
profiles shown correspond to σ = 1 (circles), 1.25 (stars) and 0.75 (triangles). The inset shows
a blow-up of the large (σ = 1.25) and small (σ = 0.75) particle distributions near the bottom
(0 � z∗ � 30).

Figure 6. Moment profiles η0(z∗) (— · —) and η1(z∗) (——) for I = 1.04 (i.e. α = 25). The
model corresponds to m(σ ) = m(1)σ and v(σ ) = v(1). The thermodynamic conditions are
ηs = 25, t = 1.5 and γ = 0.05. The monodisperse density profile ηmono(z∗) (· · · · · ·) is also
shown. The inset shows η0(z∗) and η1(z∗) for 0 � z∗ � 50.

the inversion procedure, presented in [3]. We start from the intrinsic free-energy functional
within the LDA:
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Figure 7. The influence of the polydispersity on the pressure profile p̄(z∗). We compare the
monodisperse curve (——) with those of polydisperse fluids having I = 1.04 and corresponding
to two models: m = m(1) (– – –) and m = m(1)σ (· · · · · ·). Here we have ηs = 25, t = 1.5,
γ = 0.05 and v(σ ) = v(1).

F(T, [ρ]) =
∫

dr f

=
∫

dr

∫
dσ fi(T, ρ(r, σ )) +

∫
dr fex (22)

where the first term ( fi) corresponds to the ideal part and the second term ( fex) corresponds to
the excess part of the free energy. The expression of fi is

fi(T, ρ(r, σ )) = kBTρ(r, σ ){ln(�3(σ )ρ(r, σ )) − 1} (23)

and, within our vdW model, the expression of fex is given by

fex(T, η0(r), η1(r)) = − kBT

v(1)
η0(r) ln(1 − ηk(r)) +

1

2v(1)
η2

1(r)V0 (k = 0 or 1). (24)

We notice that fi is local in ρ(r, σ ) (depending on r and σ through ρ(r, σ )), whereas fex

(within the LDA) is a local function of the first few moments of ρ(r, σ ). If we assume that
thermodynamics can be applied locally (this is consistent with LDA), then the osmotic pressure
is related to F in the following way:

�(r) =
∫

dσ ρ(r, σ )
δF

δρ(r, σ )
− f

=
∫

dσ ρ(r, σ )
δF

δρ(r, σ )
−

[∫
dσ fi(T, ρ(r, σ )) + fex(T, η0(r), η1(r))

]
. (25)

As � is only z-dependent, we rewrite (25) as

�(z) =
∫

dσ ρ(z, σ )
δF

δρ(z, σ )
−

[∫
dσ fi(T ; ρ(z, σ )) + fex(T, η0(z), η1(z))

]
. (26)

After substituting the Euler–Lagrange equation (1) into the first part of equation (26), and then
taking the z derivative of the latter, � can be related to the sedimentation profiles ρ(z, σ ) in
the simple way

d�

dz
= −

∫
dσ ρ(z, σ )m(σ )g. (27)



5426 L Bellier-Castella and H Xu

We notice that equation (27) is the well known macroscopic osmotic equilibrium condition [17],
applied here to polydisperse fluids. The above demonstration, from equations (22) to (27), is
valid as long as the free-energy functional F can be expressed as the integral of a local function
of z through the local density ρ(z, σ ). The pressure on the bottom wall (at z = 0) is deduced
by integration of (27) between z = 0 and ∞ and using the boundary condition �(+∞) = 0,
which gives

�(0) =
∫

dσ m(σ )g
∫ ∞

0
dz ρ(z, σ ) =

∫
dσ m(σ )gρs(σ ) (28)

where ρs(σ ) is the density per cross-sectional area for the σ species. The pressure profile is
thus given by:

�(z) =
∫

dσ m(σ )gρs(σ ) −
∫

dσ m(σ )g
∫ z

0
dz′ ρ(z′, σ ). (29)

For example, if we take m(σ ) = m(1)σ l (l = 0, 1), then

p̄(z) = γ t
∫

dσ σ lηs(σ ) − γ t
∫ z

0

dz′

R(1)

∫
dσ σ lη(z′, σ ) (30)

where p̄ = �v(1)/ε(1, 1). For m(σ ) = m(1), the pressure is obtained by integrating η0(z):

p̄(z) = γ tηs − γ t
∫ z

0

dz′

R(1)
η0(z

′) (31)

whereas, for m(σ ) = m(1)σ , we have

p̄(z) = γ t
∫

dσ σηs(σ ) − γ t
∫ z

0

dz′

R(1)
η1(z

′). (32)

In figure 7, we show p̄(z) versus z for I = 1.04 and the two models of m(σ ). As a function of z,
the pressure profiles turn out to be quite close to the monodisperse case. This is a consequence
of η0(z) and η1(z) being close to the monodisperse η(z) (see figure 6). To check the inversion
procedure, we have compared the values of p̄ (t; η0(z), η1(z)) from (31) and (32) to the local
vdW equation of state:

p̄vdW(t; η0(z), η1(z)) = tη0(z)

1 − ηk(z)
− 4η2

1(z) (k = 0 or 1) (33)

and noticed that they indeed fall on the surface defined by (33). This is true for k = 0 and 1. Of
course, the equation of state of a homogeneous polydisperse vdW fluid depends strongly on the
k-value in the excluded volume v(σ ) = v(1)σ k . To show this, in figure 8 we plot the pressure
versus the average density η0 of a homogeneous vdW fluid with slightly different η1 and for
the two models of the excluded volume. We indeed observe quite different curves. Therefore,
the inversion procedure defined by equation (29) allows one to deduce �(T ; η0, η1) from
measured density profiles and compare it with theoretical equations (Percus–Yevick, vdW,
etc) to find out how the different parts of the interactions depend on the polydispersity.

4. Conclusions

In this work we studied the sedimentation profiles of polydisperse vdW fluids within the DFT-
LDA formalism. By accurately solving the integral equations for the moments of the local
density ρ(z, σ ), we were able to observe interesting size segregation phenomena, monitored
by the interplay between gravitation, interparticle attractions and repulsions. It is also shown
that, within the LDA, an inversion procedure exists, which allows the osmotic equation of
state to be obtained from the knowledge of the density profile ρ(z, σ ). These results could
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Figure 8. The equation of state p̄(t; η0, η1), given by equation (33), of a homogeneous vdW fluid,
for t = 1.5. Two models considered are (i) v(σ ) = v(1) and (ii) v(σ ) = v(1)σ . For the first model
we show fluids with m1 = 0.95 (· · · · · ·) and 1.05 (circles); for the second model we show fluids
with m1 = 0.95 (– – –) and 1.05 (dots). We recall that m1 = η1/η0 is the first moment of the size
distribution h(σ ). The monodisperse case is also shown (——).

of course be used in experiments, to determine the nature of the interparticle interactions and
their dependence on the polydispersity of the sample. For technical reasons, the present study
is limited to relatively weak gravitational strengths (γ � 0.1), low fluid density, and weak
dependence of the particle volume and mass on the polydispersity. These technical points
can be improved, yielding stronger effects than those observed here, but we believe we have
captured the main qualitative features. One last point is that we deliberately avoided fluid–fluid
phase separation by placing the system above its critical point, in order to keep the investigation
within the framework of the LDA. The latter would naturally break down if a liquid–vapour
interface existed in the system. It is of course possible to go beyond the LDA [3, 14], but the
calculations would be much more involved and outside the scope of this study.
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